Fractions: Converting Mixed Numbers to Improper Fractions

Aim:

Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number.

To convert mixed numbers into improper fractions.

Success Criteria:

I can identify the properties of proper fractions, improper fractions and mixed numbers.

I can represent fractions greater than 1 as diagrams.

I can talk about the methods I use to convert mixed numbers.

Key/New Words:

Numerator, denominator, equivalent, proper fraction, whole, part, mixed number, improper fraction.

Resources:

Lesson Pack

Preparation:

Mixed Numbers to Improper Fractions Dominoes - one per pair as required
Diving into Mastery Activity Sheets - as required

Year 4 Ready to Progress Criteria: 4F-2 Convert mixed numbers to improper fractions and vice versa. Please note that nonPrior Learning: statutory guidance released in 2020 has advised teaching this year 5 objective in year 4 . We provide lessons teaching this objective in both year groups to provide coverage for all schools.

Learning Sequence

Fractions Less Than 1: Use the corresponding slide on the Lesson Presentation to rehearse identifying proper
fractions from diagrams. Check that children are using the correct vocabulary to describe the denominators -
e.g. fifths not fives. Do the children know the term 'proper fraction' for a fraction less than one whole?
Mixed Number to Improper Fractions Dominoes: The children work with a partner to play the Mixed Numbers
to Improper Fractions Dominoes. This activity is pitched at expected standard. Below are suggestions for
how you can support children working below expected standard or at greater depth during the activity. Can the
children convert mixed numbers into improper fractions?

Exploreit

Learnit: Children will find this visually exciting Knowledge Organiser a useful tool to support their understanding of fractions.
Loopit: Practise converting between mixed number and improper fractions in groups or as a class with these loop cards.
Countit: Children create sequences by counting on in different fraction steps. Challenge the children to show the sequences as both improper fractions and mixed numbers.

Fractions

Maths | Year 5 | Fractions | Mixed Number and Improper Fractions | Lesson 1 of 2: Converting Fractions

Gonverting Mirued Nombers to Improper Fractions

Aim

- To convert mixed numbers to improper fractions.

Success Criteria

- I can identify the properties of proper fractions, improper fractions and mixed numbers.
- I can represent fractions greater than 1 as diagrams.
- I can talk about the methods I use to convert mixed numbers.

Fractions Less Than 1

Can you say the fractions shown here?

One half
$=\frac{1}{2}$
All these fractions are less than one whole. Do you know the name for fractions less than one?

Three quarters
$=\frac{3}{4}$

Five ninths $=\frac{5}{9}$

The Whole

To work with fractions Two one halves Throo one thirds Four one awartors Five one fifths Siv ono civthc Seven one sevenths Fiaht one eiahths Ten one tenths make one whole.

Complete the sentence stems out loud. The first is done for you.

Mixed Numbers

This diagram shows a fraction greater than 1. How many complete wholes are there?

In the circle that isn't a complete whole, what fraction part is there?

When we describe a fraction greater than 1 using wholes and parts, this is called a mixed number.

Here is how we write this diagram as a mixed number.

Mixed Numbers

This diagram shows a fraction greater than 1.
How many complete wholes are there?
How many extra fraction parts are there?

Can you write the fraction as a mixed number?

Mixed Numbers

This diagram shows a fraction greater than 1. How many complete wholes are there? How many extra fraction parts are there?

Can you write the fraction as a mixed number?
 as a mixed number?

There are three complete wholes

The fraction parts are three fifths.

Mixed Numbers

Can you think of places you will see mixed numbers in everyday life? Here are some examples of mixed numbers. Have a go at saying them.

Improper Fractions

How many parts make the whole?
This is the denominator.
How many fractions parts are there altogether?

Two one-halves there altogether? make the whole. The denominator is 2 .

There are three one-halves in the fraction. The numerator is 3 .
Here is how we write this diagram as an improper fraction. We say it as three halves. In an improper fraction, the numerator will always be greater than the denominator.

Improper Fractions

This diagram shows a fraction greater than 1.
How many parts make the whole?
This is the denominator.
How many fraction parts are there altogether?

Can you write this diagram as an improper fraction? How do you say it?

Improper Fractions

This diagram shows a fraction greater than 1. How many parts make the whole?
This is the denominator.
How many fraction parts are there altogether?

Five one-fifths make the whole. The denominator is 5 .

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$		

Can you write this diagram as an improper fraction? How do you say it?

There are eighteen one-fifths in the fraction. The numerator is 18.

Eighteen fifths

Fractions Greater Than 1

Now, we can describe fractions greater than 1 as both mixed fractions and improper fractions.

Fractions Greater Than 1

Can you write both the mixed number and improper fraction for this diagram?

Converting to Improper Fractions

Here is a mixed number. Let's look at the different methods we can use to convert this to an improper fraction.

Converting to Improper Fractions

The first method we can use is to draw a diagram and count how many one-quarters there are altogether.

Converting to Improper Fractions

The second method we can use is repeated addition.

$$
3 \frac{3}{4}
$$

$\frac{155}{[4]}$

We can see what repeated addition looks like on a bar model.

$$
\frac{4}{4}+\frac{4}{4}+\frac{4}{4}+\frac{3}{4}=\frac{15}{4}
$$

Converting to Improper Fractions

The third method we can use is multiplication.

$12+3=15$

Converting to Improper Fractions

Have a go at changing these mixed numbers into their improper fraction equivalents. Discuss the methods you use.

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

$\frac{1}{5}$	$\frac{1}{5}$			

Mixed Numbers to Improper Fractions Dominoes

Can you complete the domino snake by matching the mixed numbers to their improper fraction equivalent?

How to play:

- Spread the cards out face up on the table.
- Find the card labelled start.
- Look carefully at the mixed number shown on this card.
- Work together to convert this to an improper fraction remember to talk about the methods you use.
- Can you continue to match the cards until you reach the finish?

Diving into Mastery

Dive in by completing your own activity!

Aim

- To convert mixed numbers to improper fractions.

Success Criteria

- I can identify the properties of proper fractions, improper fractions and mixed numbers.
- I can represent fractions greater than 1 as diagrams.
- I can talk about the methods I use to convert mixed numbers.

Regent Studies| www.regentstudies.com

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

\mathbf{T}	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

1)

a) $3 \frac{1}{3}=\frac{10}{3}$
b) $2 \frac{3}{4}=\frac{11}{4}$
c) $3 \frac{2}{5}=\frac{17}{5}$
2)
a)

b) $\frac{6}{6}+\frac{6}{6}+\frac{6}{6}+\frac{5}{6}=\frac{23}{6}$
c) $7 \times 3=21$
$21+4=25$
$=\frac{25}{7}$

1) Sol is incorrect. He has written the whole as three ninths, when the whole is nine ninths. Cormac is incorrect. His method is right, but he made a mistake in the addition of the numerators. Fred is correct. He's chosen a good method and his calculation is correct.
2) Children should have drawn diagrams to illustrate. Examples are given.
a) True

$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$

b) False, we can use our multiplication facts to know that $\mathbf{3 0}$ sixths will be five wholes.

c) True

1) $4 \frac{1}{6}=\frac{25}{6} \quad 4 \frac{3}{6}=\frac{27}{6} \quad 4 \frac{5}{6}=\frac{29}{6}$
$4 \frac{1}{8}=\frac{33}{8} \quad 4 \frac{3}{8}=\frac{35}{8} \quad 4 \frac{5}{8}=\frac{37}{8} \quad 4 \frac{7}{8}=\frac{39}{8}$
2)

a)

Butterfly	Snail
1	10
2	17
3	24
4	31
5	38
6	45
7	52

b) The numbers in the butterfly column go up by 1 each time while the numbers in the snail column go up by 7 each time. Children may identify that this is because there are 7 sevenths in 1 whole, so as you add 1 whole, you must add 7 sevenths.

1) Use the diagrams to help you to convert the mixed numbers to improper fractions.
a)

$3 \frac{1}{3}=-$
b)

$2 \frac{3}{4}=-$
c)

$3 \frac{2}{5}=-$
2) Use different methods to convert these mixed numbers. Show your working out.
a)
$2 \frac{3}{5}=-$
Draw a diagram.
b) $3 \frac{5}{6}=-\quad \quad \begin{gathered}\text { Use repeated } \\ \text { addition. }\end{gathered}$

c) $3 \frac{4}{7}=-$

> Use multiplication and addition.

1) Sol, Cormac and Fred have all had a go at converting this mixed number into an improper fraction.

$$
3 \frac{2}{9}=-
$$

Look at each person's working out. Who is correct? Explain the mistakes made by the others.

\qquad
\qquad
\qquad

$$
\frac{9}{9}+\frac{9}{9}+\frac{9}{9}+\frac{2}{9}=\frac{30}{9}
$$

\qquad
\qquad
\qquad
$3 \times 9=27$
$27+2=\frac{29}{9}$
\qquad

\qquad
\qquad
2) Are the following statements true or false? Explain your answer using diagrams.
a) When the numerator and denominator are the same, the fraction is equivalent to 1 whole.

b) $5 \frac{1}{6}$ is equivalent to $\frac{30}{6}$.

c) In $4 \frac{3}{10}$ there are 43 one-tenths.

1) Look at the clues below which describe a mixed number.

The numerator is an odd number.

Find all possible mixed numbers that Rachel's fraction could be. Convert your answers to improper fractions, showing your working out.

2) In this mixed number and improper fraction, some of the digits have been hidden by two minibeasts.

The table shows some possible values of the butterfly.
a) Complete the table to give the matching value of the snail.
b) Look at your answers in the table. What do you notice? Why might this happen?

2	
1	10
2	
3	
4	
6	
7	

\qquad
\qquad

1) Use the diagrams to help you to convert the mixed numbers to improper fractions.

a)

$$
3 \frac{1}{3}=-
$$

b)

c)

$3 \frac{2}{5}=-$
2) Use different methods to convert these mixed numbers. Show your working out.
a) $2 \frac{3}{5}=-$ Draw a diagram.
b) $3 \frac{5}{6}=-$

Use repeated addition.
c) $3 \frac{4}{7}=-$ Use multiplication and addition.

1) Use the diagrams to help you to convert the mixed numbers to improper fractions.
a)

$3 \frac{1}{3}=-$
b)

$2 \frac{3}{4}=-$
c)

$3 \frac{2}{5}=-$
2) Use different methods to convert these mixed numbers. Show your working out.
a) $2 \frac{3}{5}=-$

Draw a diagram.
b) $3 \frac{5}{6}=-$

Use repeated addition.
c) $3 \frac{4}{7}=-$ Use multiplication and addition.

1) Sol, Cormac and Fred have all had a go at converting this mixed number into an improper fraction.

$$
3 \frac{2}{9}=-
$$

Look at each person's working out. Who is correct?
Explain the mistakes made by the others.

2) Are the following statements true or false? Explain your answer using diagrams.
a) When the numerator and denominator are the same, the fraction is equivalent to 1 whole.
b) $5 \frac{1}{6}$ is equivalent to $\frac{30}{6}$.
c) In $4 \frac{3}{10}$ there are 43 one-tenths.

1) Sol, Cormac and Fred have all had a go at converting this mixed number into an improper fraction.

$$
3 \frac{2}{9}=-
$$

Look at each person's working out. Who is correct? Explain the mistakes made by the others.

2) Are the following statements true or false? Explain your answer using diagrams.
a) When the numerator and denominator are the same, the fraction is equivalent to 1 whole.
b) $5 \frac{1}{6}$ is equivalent to $\frac{30}{6}$.
c) In $4 \frac{3}{10}$ there are 43 one-tenths.

1) Look at the clues below which describe a mixed number.

There are 4 wholes.

The numerator is an odd number.

Find all possible mixed numbers that Rachel's fraction could be. Convert your answers to improper fractions, showing your working out.
2) In this mixed number and improper fraction, some of the digits have been hidden by two minibeasts.

The table shows some possible values of the butterfly.
a) Complete the table to give the matching value of the snail.

1	10
1	
2	
3	
5	
7	
7	

b) Look at your answers in the table. What do you notice? Why might this happen?

1) Look at the clues below which describe a mixed number.

There are 4 wholes.

Find all possible mixed numbers that Rachel's fraction could be. Convert your answers to improper fractions, showing your working out.
2) In this mixed number and improper fraction, some of the digits have been hidden by two minibeasts.

The table shows some possible values of the butterfly.
a) Complete the table to give the matching value of the snail.

1	10
1	
2	
4	
5	
7	
7	

b) Look at your answers in the table. What do you notice? Why might this happen?
\rightarrow (a)
\square

Fractions | Converting Mixed Numbers to Improper Fractions

To convert mixed numbers into improper fractions.				
I can identify the properties of proper fractions, improper fractions and mixed numbers.				
I can represent fractions greater than 1 as diagrams.				I can talk about the methods I use to convert
:---				
mixed numbers.				

Fractions \| Converting Mixed Numbers to Improper Fractions
To convert mixed numbers into improper fractions. I can identify the properties of proper fractions, improper fractions and mixed numbers. I can represent fractions greater than 1 as diagrams.
I can talk about the methods I use to convert mixed numbers.

Fractions \| Converting Mixed Numbers to Improper Fractions
To convert mixed numbers into improper fractions. I can identify the properties of proper fractions, improper fractions and mixed numbers. I can represent fractions greater than 1 as diagrams.
I can talk about the methods I use to convert mixed numbers.

Fractions \| Converting Mixed Numbers to Improper Fractions
To convert mixed numbers into improper fractions. I can identify the properties of proper fractions, improper fractions and mixed numbers. I can represent fractions greater than 1 as diagrams.
I can talk about the methods I use to convert mixed numbers.

Fractions | Converting Mixed Numbers to Improper Fractions

To convert mixed numbers into improper fractions.		
I can identify the properties of proper fractions, improper fractions and mixed numbers.		
I can represent fractions greater than 1 as diagrams.		
I can talk about the methods I use to convert mixed numbers.		

Fractions \| Converting Mixed Numbers to Improper Fractions
To convert mixed numbers into improper fractions. I can identify the properties of proper fractions, improper fractions and mixed numbers. I can represent fractions greater than 1 as diagrams.
I can talk about the methods I use to convert mixed numbers.

Fractions \| Converting Mixed Numbers to Improper Fractions
To convert mixed numbers into improper fractions. I can identify the properties of proper fractions, improper fractions and mixed numbers. I can represent fractions greater than 1 as diagrams.
I can talk about the methods I use to convert mixed numbers.

Fractions | Converting Mixed Numbers to Improper Fractions

To convert mixed numbers into improper fractions.		
I can identify the properties of proper fractions, improper fractions and mixed numbers.		
I can represent fractions greater than 1 as diagrams.		

